Volume 15, Issue 4 (Jul-Aug 2021)                   mljgoums 2021, 15(4): 21-27 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

arbabian T, Rezaeshirazi R, Farzaneh Hesari A, Asgharpour H. Does Physical Activity Level Affect Homocysteine and Obesity Variables in Women with Cardiovascular Disease?. mljgoums 2021; 15 (4) :21-27
URL: http://mlj.goums.ac.ir/article-1-1309-en.html
1- Department of Physical Education and Sport Sciences, Aliabad Katoul Branch, Islamic Azad University, Aliabad Katoul, Iran
2- Department of Physical Education and Sport Sciences, Aliabad Katoul Branch, Islamic Azad University, Aliabad Katoul, Iran , dr.rezaee@aliabadiau.ac.ir
3- Department of Physical Education and Sport Sciences, Sari Branch, Islamic Azad University, Sari, Iran
Abstract:   (2295 Views)
Background and objectives: Physical activity has long been considered as the cornerstone of interventions for reducing the burden of cardiovascular diseases (CVDs). Homocysteine and obesity indices are important indicators of CVD risk. The present research aimed to evaluate homocysteine and obesity variables in female CVD patients and healthy counterparts with different physical activity levels.
Methods: This study was carried out on 85 CVD patients (40-55 yr, n=41, 60-75 yr, n=44) and 80 healthy women (40-50 yr, n=40, 60-75 yr, n=40). Subjects were divided into three groups based on their physical activity level: sedentary, moderately active and active. Serum homocysteine, body roundness index (BRI), a body shape index (ABSI), body mass index (BMI) and waist circumference (WC) were measured. Data were analyzed using the independent t-test and one-way ANOVA.
Results: Physically active middle-aged CVD patients had significantly lower BRI (p=0.022) and homocysteine (p=0.008) levels compared with the sedentary counterparts. In addition, physically-active old CVD patients had significantly lower BRI (p=0.041), ABSI (p=0.011) and homocysteine (p=0.001) compared with the sedentary counterparts. Physically-active healthy middle-aged individuals had significantly lower BRI (p=0.013) and BMI (p=0.008) levels compared with sedentary counterparts. Active elderly subjects also had significantly lower BRI (p=0.001) and WC (p=0.008) compared with the sedentary counterparts.
Conclusion: Physical activity can reduce the risk of CVD and improve health status of women by reducing homocysteine, BRI and ABSI.
Full-Text [PDF 534 kb]   (535 Downloads) |   |   Full-Text (HTML)  (1011 Views)  
Research Article: Original Paper | Subject: Sport Physiology
Received: 2020/08/4 | Accepted: 2020/09/29 | Published: 2021/06/30 | ePublished: 2021/06/30

References
1. Roth GA, Johnson C, Abajobir A, Abd-Allah F, Abera SF, Abyu G, et al. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Coll Cardiol. 2017; 70(1): 1-25. [DOI:10.1016/j.jacc.2017.04.052] [PubMed] [Google Scholar]
2. World Health Organization. Physical activity[Online]. [cited 2012]; Available from: URL: http://www.who.int/topics/physical_activity/en. [Google Scholar]
3. Neeland IJ, Poirier P, Després J-P. Cardiovascular and metabolic heterogeneity of obesity: clinical challenges and implications for management. Circulation. 2018;137(13): 1391-406. [DOI:10.1161/CIRCULATIONAHA.117.029617] [PubMed] [Google Scholar]
4. Luo J, Hendryx M, Laddu D, Phillips LS, Chlebowski R, LeBlanc ES, et al. Racial and ethnic differences in anthropometric measures as risk factors for diabetes. Diabetes Care. 2019;42(1): 126-33. [DOI:10.2337/dc18-1413] [PubMed] [Google Scholar]
5. Berrington de Gonzalez A, Hartge P, Cerhan JR, Flint AJ, Hannan L, RJ MI, et al. Body-mass index and mortality among 1.46 million white adults. New Engl J Med. 2010;363(23): 221-9. [DOI:10.1056/NEJMoa1000367] [PubMed] [Google Scholar]
6. Zeng Q, He Y, Dong S, Zhao X, Chen Z, Song Z, et al. Optimal cut-off values of BMI, waist circumference and waist: height ratio for defining obesity in Chinese adults. Br J Nutr. 2014;112(10): 1735-44. [DOI:10.1017/S0007114514002657] [PubMed] [Google Scholar]
7. Donini LM, Poggiogalle E, Del Balzo V. How to estimate fat mass in overweight and obese subjects. Int J Endocrinol. 2013;28: 56-70. [DOI:10.1155/2013/285680] [PubMed] [Google Scholar]
8. Krakauer NY, Krakauer JC. A new body shape index predicts mortality hazard independently of body mass index. PLoS One. 2012; 7, 39-50. [DOI:10.1371/journal.pone.0039504] [PubMed] [Google Scholar]
9. He S, Chen X. Could the new body shape index predict the new onset of diabetes mellitus in the Chinese population? PLoS One. 2013; 8, 50-73. [DOI:10.1371/journal.pone.0050573] [PubMed] [Google Scholar]
10. Krakauer NY, Krakauer JC. Dynamic association of mortality hazard with body shape. PLoS One. 2014; 9, 88-93. [DOI:10.1371/journal.pone.0088793] [PubMed] [Google Scholar]
11. Chang Y, Guo X, Chen Y, Guo L, Li Z, Shasha Yu et al. A body shape index and body roundness index: two new body indices to identify diabetes mellitus among rural populations in northeast China. BMC Public Health. 2015; 15, 794-305. [DOI:10.1186/s12889-015-2150-2] [PubMed] [Google Scholar]
12. Haghighatdoost F, Sarrafzadegan N, Mohammadifard N, Asgary S, Boshtam M, Azadbakht L . Assessing body shape index as a risk predictor for cardiovascular diseases and metabolic syndrome among Iranian adults. Nutrition. 2014; 30, 636-644. [DOI:10.1016/j.nut.2013.10.021] [PubMed] [Google Scholar]
13. Thomas DM, Bredlau C, Bosy-Westphal A, Mueller M, Shen W, Gallagher D, et al. Relationship between body roundness index with body fat and visceral adipose tissue emerging froma new geometrical model. Obesity (Silver Spring) 2013; 21, 2264-2271. [DOI:10.1002/oby.20408] [PubMed] [Google Scholar]
14. Zhang N, Chang Y, Guo X, Chen Y, Ning Ye, Yingxian Sun . A Body Shape Index and Body Roundness Index: two new body indices for detecting association between obesity and hyperuricemia in rural area of China. Eur J Intern Med. 2016; 29, 32-36. [DOI:10.1016/j.ejim.2016.01.019] [PubMed] [Google Scholar]
15. McCully KS. Homocysteine and the pathogenesis of atherosclerosis. Expert Review of Clinical Pharmacology, 2015; 8(2):211-9. [DOI:10.1586/17512433.2015.1010516] [PubMed] [Google Scholar]
16. Chrysant SG, Chrysant GS. The current status of homocysteine as a risk factor for cardiovascular disease: a mini review. Expert Review of Cardiovascular Therapy, 2018, 16:8, 559-565. [DOI:10.1080/14779072.2018.1497974] [PubMed] [Google Scholar]
17. Dankner R, Geulayov G, Farber N, Novikov I, Segev S, Sela BA. Cardiorespiratory fitness and plasma homocysteine levels in adult males and females. Isr Med Assoc J. 2009 ;11(2):78-82 [PubMed] [Google Scholar]
18. Sinha D, Dwivedi MK. The Effect of Physical Activity on Blood Homocysteine Concentration. Int J Curr Microbiol App Sci, 2017, 6(9): 1206-10. [DOI:10.20546/ijcmas.2017.609.146] [Google Scholar]
19. Alomari MA, Khabour OF, Gharaibeh MY, Qhatan RA. Effect of physical activity on levels of homocysteine, folate, and vitamin B12 in the elderly. Phys Sportsmed. 2016;44(1):68-73. doi: 10.1080/00913847.2016.1135037. 2016. 1-6 [DOI:10.1080/00913847.2016.1135037] [PubMed] [Google Scholar]
20. Kelishadi R, Ardalan G, Gheiratmand R, Gouya MM, Razaghi EM, Delavari A, et al. Association of physical activity and dietary behaviours in relation to the body mass index in a national sample of Iranian children and adolescents: CASPIAN Study. Bull World Health Organ. 2007 ;85(1):19-26. [DOI:10.2471/BLT.06.030783] [PubMed] [Google Scholar]
21. Vincent KR, Braith RW, Bottiglieri T, Vincent HK, Lowenthal DT. Homocysteine and lipoprotein levels following resistance training in older adults. Prev Cardiol. 2003 Fall;6(4): 197-203. [DOI:10.1111/j.1520-037X.2003.01723.x] [PubMed] [Google Scholar]
22. Rostami S, Gaeini A, Zamani A, Hoseini H. A Survey of the Effect of a Cardiac Rehabilitation Program (Concurrent Resistance-Endurance Training) on Homocysteine, Interleukin-6 and Interleukin-10 Changes in Men with Heart Disease. Sport physiology & management Investigations. 2016, 8(2): 24-35. [Google Scholar]
23. Soori R, Choopani S, Falahian N. Effect of Physical Activity on Serum Homocysteine Levels in Obese and Overweight Women. Quarterly of the Horizon of Medical Sciences, 2017; 22(4): 307-312. [DOI:10.18869/acadpub.hms.22.4.307] [Google Scholar]
24. Di Santolo M, Banfi G, Stel G, Cauci S. Association of recreational physical activity with homocysteine, folate and lipid markers in young women. European journal of applied physiology. 2009; 105(1): 111-118. [DOI:10.1007/s00421-008-0880-x] [PubMed] [Google Scholar]
25. Subaşı SS, Gelecek N, Aksakoğlu G, Örmen M. Effects of two different exercise trainings on plasma homocysteine levels and other cardiovascular disease risks. Turkish Journal of Biochemistry/Turk Biyokimya Dergisi. 2012; 37(3), 61-74. [DOI:10.5505/tjb.2012.97268] [Google Scholar]
26. Bambaeichi E, Najari MA, Barjasteh B. Influence of incremental aerobic exercise on homocysteine level in young males. British Journal of Sports Medicine. 2010; 44(1): 21-29. [DOI:10.1136/bjsm.2010.078725.70] [Google Scholar]
27. Hamedinia M, Haghighi A, Ravasi A. The effect of aerobic training on inflammatory markers of cardiovascular disease risk in obese men. World J Sport Sci. 2009; 2(1): 7-12. [Google Scholar]
28. Hrncic D, Rasic-Markovic A, Lekovic J, Krstic D, Colovic M, Macut D, et al. Exercise decreases susceptibility to homocysteine seizures: the role of oxidative stress. Int J Sports Med. 2014;35(7): 544-50. [DOI:10.1055/s-0033-1357162] [PubMed] [Google Scholar]
29. Chang Y, Guo X, Li T, Li S, Guo J, Sun Y. A Body Shape Index and Body Roundness Index: Two New Body Indices to Identify left Ventricular Hypertrophy among Rural Populations in Northeast China. Heart Lung Circ. 2016 ;25(4): 358-64 [DOI:10.1016/j.hlc.2015.08.009] [PubMed] [Google Scholar]
30. Maessen MF, Eijsvogels TM, Verheggen RJ, Hopman MT, Verbeek AL, de Vegt F. Entering a new era of body indices: the feasibility of a body shape index and body roundness index to identify cardiovascular health status. PLoS One. 2014 17;9(9):e107212. [DOI:10.1371/journal.pone.0107212] [PubMed] [Google Scholar]
31. Garcıa-Hermoso A, Saavedra JM, Ramırez-Velez R, Ekelund U, Del Pozo-Cruz B. Reallocating sedentary time to moderate-to-vigorous physical activity but not to light-intensity physical activity is effective to reduce adiposity among youths: a systematic review and meta-analysis. Obes Rev. 2017; 18:1088-95. [DOI:10.1111/obr.12552] [PubMed] [Google Scholar]
32. Savva SC, Tornaritis M, Savva ME, Kourides Y, Panagi A, Silikiotou N, et al . Waist circumference and waist-to-height ratio are better predictors of cardiovascular disease risk factors in children than body mass index. Int J Obes Relat Metab Disord. 2000;24(11):1453-8. [DOI:10.1038/sj.ijo.0801401] [PubMed] [Google Scholar]
33. Adegbija O, Hoy W, Wang Z. Prediction of cardiovascular disease risk using waist circumference among Aboriginals in a remote Australian community. BMC Public Health. 2015; 15: 57-72. [DOI:10.1186/s12889-015-1406-1] [PubMed] [Google Scholar]
34. Bozorgmanesh M, Sardarinia M, Hajsheikholeslami F, Azizi F, Hadaegh F. CVD-predictive performances of "a body shape index" versus simple anthropometric measures: Tehran lipid and glucose study. Eur J Nutr. 2016; 55: 147-157. [DOI:10.1007/s00394-015-0833-1] [PubMed] [Google Scholar]
35. Skrede T, Stavnsbo M, Aadland E, Aadland KN, Anderssen SA, Resaland GK, et al. Moderate-to-vigorous physical activity, but not sedentary time, predicts changes in cardiometabolic risk factors in 10-y-old children: the Active Smarter Kids Study. Am J Clin Nutr. 2017 ;105(6):1391-1398. [DOI:10.3945/ajcn.116.150540] [PubMed] [Google Scholar]
36. Eckel RH, Jakicic JM, Ard JD, de Jesus JM, Houston Miller N, Hubbard VS, et al. AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014 1;63(25 Pt B):2960-84. [DOI:10.1161/01.cir.0000437740.48606.d1] [PubMed] [Google Scholar]
37. Pamidi S, Tasali E. Obstructive sleep apnea and type 2 diabetes: is there a link? Front Neurol. 2012; 3: 126-37. [DOI:10.3389/fneur.2012.00126] [PubMed] [Google Scholar]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2007 All Rights Reserved | Medical Laboratory Journal

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.