Volume 15, Issue 5 (Sep-Oct 2021)                   mljgoums 2021, 15(5): 7-12 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kiani Z, Mohammad Parast Tabas P, khalilpour K, Goldani Moghadam M, Zare_Bidaki M. Evaluation of in Vitro Antimicrobial Effects of Aqueous Extract of Tribulus terrestris Against Oral Bacteria. mljgoums 2021; 15 (5) :7-12
URL: http://mlj.goums.ac.ir/article-1-1377-en.html
1- Pharmacology department, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
2- Student Research Committee, BSc Student in Medical Laboratory Science, Birjand University of Medical Sciences, Birjand, Iran
3- Faculty of Dentistry, Birjand University of Medical Science, Birjand, Iran
4- Orthodontic Department, Faculty of Dentistry, Birjand University of Medical Sciences, Birjand, Iran
5- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran , m.zare@live.co.uk
Abstract:   (3130 Views)

Background and objectives: Medicinal plants have long been considered as one of the most important pillars of traditional medicine. Existing challenges in the treatment of diseases, particularly infectious diseases, are major drivers for herbal medicine studies. Tribulus terrestris has been widely used in traditional medicine to treat various diseases. This study aimed to investigate in vitro antibacterial effect of the aqueous extract of T. terrestris on several oral bacteria.

Methods: In this experimental study, after preparing the aqueous extract of T. terrestris, minimum inhibitory and bactericidal concentrations (MIC and MBC) of the extract were determined against standard strains of Streptococcus mutans, Staphylococcus aureus, Klebsiella pneumoniae and Streptococcus pyogenes using the broth microdilution method. The experiments were repeated three times and the results were analyzed with SPSS 22 using the one-way analysis of variance (ANOVA) and LSD statistical tests with the significance level set at 0.05.

Results: The aqueous extract of T. terrestris had the highest inhibitory effect on S. pyogenes and S. mutans, and the difference between the MIC and MBC values was significant (P <0.05). However, no such effect was observed against S. aureus and K. pneumonia at concentrations below 50 mg/ml when compared to ampicillin and chlorhexidine.
Conclusion: The aqueous extract of T. terrestris has significant antibacterial effects against S. pyogenes and S. mutans. Therefore, it can be incorporated into topical formulations such as toothpaste and mouthwash products after further in vivo and toxicity experiments.
Full-Text [PDF 703 kb]   (615 Downloads) |   |   Full-Text (HTML)  (1362 Views)  
Research Article: Research Article | Subject: Microbiology
Received: 2021/04/4 | Accepted: 2021/06/21 | Published: 2021/08/31 | ePublished: 2021/08/31

References
1. Zare Bidaki M, Arab M, Khazaei M, Afkar E, Zardast M. Anti-bacterial effect of zataria multiflora boiss. Essential oil on eight gastrointestinal pathogenic species. The Horizon of Medical Sciences. 2015;21(3):155-61. [View at Publisher] [DOI:10.18869/acadpub.hms.21.3.155] [Google Scholar]
2. Siadaty S, Siadati A, editors. New medicinal knowledge and consumption of medicinal plants. Conference Proceedings, Tonekabon Branch, Islamic Azad University; 2007. [View at Publisher] [Google Scholar]
3. Ekor M. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Frontiers in pharmacology. 2014;4:177. [View at Publisher] [DOI:10.3389/fphar.2013.00177] [PubMed] [Google Scholar]
4. Tamokou Jde D, Chouna JR, Fischer-Fodor E, Chereches G, Barbos O, Damian G, et al. Anticancer and antimicrobial activities of some antioxidant-rich cameroonian medicinal plants. PLoS One. 2013;8(2):e55880 [View at Publisher] [DOI:10.1371/journal.pone.0055880] [PubMed] [Google Scholar]
5. Tetali SD. Terpenes and isoprenoids: a wealth of compounds for global use. Planta. 2019 ;249(1):1-8 [View at Publisher] [DOI:10.1007/s00425-018-3056-x] [PubMed] [Google Scholar]
6. Yonekura-Sakakibara K, Higashi Y, Nakabayashi R. The Origin and Evolution of Plant Flavonoid Metabolism. Front Plant Sci. 2019; 10: 943. [View at Publisher] [DOI:10.3389/fpls.2019.00943] [PubMed] [Google Scholar]
7. Mahizan NA, Yang SK, Moo CL, Song AA, Chong CM, Chong CW, Abushelaibi A, Lim SE, Lai KS. Terpene Derivatives as a Potential Agent against Antimicrobial Resistance (AMR) Pathogens. Molecules. 2019 19;24(14):2631. [View at Publisher] [DOI:10.3390/molecules24142631] [PubMed] [Google Scholar]
8. Vambe M, Aremu A, Chukwujekwu J, Finnie J, Van Staden J. Antibacterial screening, synergy studies and phenolic content of seven South African medicinal plants against drug-sensitive and-resistant microbial strains. South African Journal of Botany. 2018;114:250-9. [View at Publisher] [DOI:10.1016/j.sajb.2017.11.011] [Google Scholar]
9. Okwu MU, Olley M, Akpoka AO, Izevbuwa OE. Methicillin-resistant Staphylococcus aureus (MRSA) and anti-MRSA activities of extracts of some medicinal plants: A brief review. AIMS Microbiol. 2019 15;5(2):117-137. [View at Publisher] [DOI:10.3934/microbiol.2019.2.117] [PubMed] [Google Scholar]
10. Chhatre S, Nesari T, Somani G, Kanchan D, Sathaye S. Phytopharmacological overview of Tribulus terrestris. Pharmacogn Rev. 2014 ;8(15):45-51. [View at Publisher] [DOI:10.4103/0973-7847.125530] [PubMed] [Google Scholar]
11. Zhu W, Du Y, Meng H, Dong Y, Li L. A review of traditional pharmacological uses, phytochemistry, and pharmacological activities of Tribulus terrestris. Chem Cent J. 2017 11;11(1):60. [View at Publisher] [DOI:10.1186/s13065-017-0289-x] [PubMed] [Google Scholar]
12. Semerdjieva IB, Zheljazkov VD. Chemical constituents, biological properties, and uses of Tribulus terrestris: A review. Natural Product Communications. 2019;14(8):1934578X19868394. [View at Publisher] [DOI:10.1177/1934578X19868394] [Google Scholar]
13. Qiu W, Zhou Y, Li Z, Huang T, Xiao Y, Cheng L, et al. Application of Antibiotics/Antimicrobial Agents on Dental Caries. Biomed Res Int. 2020 31;2020:5658212. [View at Publisher] [DOI:10.1155/2020/5658212] [PubMed] [Google Scholar]
14. Liu XR, Xu Q, Xiao J, Deng YM, Tang ZH, Tang YL, et al. Role of oral microbiota in atherosclerosis. Clin Chim Acta. 2020 ;506:191-195. [View at Publisher] [DOI:10.1016/j.cca.2020.03.033] [PubMed] [Google Scholar]
15. Arweiler NB, Netuschil L. The Oral Microbiota. Adv Exp Med Biol. 2016;902:45-60. [View at Publisher] [DOI:10.1007/978-3-319-31248-4_4] [PubMed] [Google Scholar]
16. Yadav K, Prakash S. Dental caries: A microbiological approach. J Clin Infect Dis Pract. 2017;2(1):1-15. [View at Publisher] [DOI:10.4172/2476-213X.1000118] [Google Scholar]
17. Nomura R, Matayoshi S, Otsugu M, Kitamura T, Teramoto N, Nakano K. Contribution of Severe Dental Caries Induced by Streptococcus mutans to the Pathogenicity of Infective Endocarditis. Infect Immun. 2020 22;88(7):e00897-19. [DOI:10.1128/IAI.00897-19] [PubMed] [Google Scholar]
18. Al-Otaibi MK, Ahmed S, Al-Abdullah FA, Sabbagh OM, Al-Qahtani JM, Al-Mutairi FH, et al. Bacteriological correlation between dental plaque and chronic tonsillitis. Journal of Interdisciplinary Dentistry. 2019;9(3):119. [View at Publisher] [DOI:10.4103/jid.jid_5_19] [Google Scholar]
19. Alizadeh Behbahani B, Noshad M, Falah F. Cumin essential oil: Phytochemical analysis, antimicrobial activity and investigation of its mechanism of action through scanning electron microscopy. Microb Pathog. 2019 ;136:103716. [View at Publisher] [DOI:10.1016/j.micpath.2019.103716] [PubMed] [Google Scholar]
20. Clinical, Institute LS. Performance standards for antimicrobial susceptibility testing. Clinical and Laboratory Standards Institute Wayne, PA; 2017. [View at Publisher]
21. Cugnata NM, Guaspari E, Pellegrini MC, Fuselli SR, Alonso Salces RM. Optimal concentration of organic solvents to be used in the broth microdilution method to determine the antimicrobial activity of natural products against Paenibacillus larvae. Journal of Apicultural Science. 2017; 61(1): 37-53. [DOI:10.1515/jas-2017-0004] [Google Scholar]
22. Hendiani I, Susanto A, Carolina DN, Ibrahim R, Balafif FF. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of mangosteen (Garcinia mangostana Linn.) rind extract against Aggregatibacter actinomycetemcomitans. Padjadjaran Journal of Dentistry. 2020;32(2):131-5. [View at Publisher] [DOI:10.24198/pjd.vol32no2.27366] [Google Scholar]
23. Al-Bayati FA, Al-Mola HF. Antibacterial and antifungal activities of different parts of Tribulus terrestris L. growing in Iraq. J Zhejiang Univ Sci B. 2008 ;9(2):154-9. [View at Publisher] [DOI:10.1631/jzus.B0720251] [PubMed] [Google Scholar]
24. Soleimanpour S, Sedighinia FS, Safipour Afshar A, Zarif R, Ghazvini K. Antibacterial activity of Tribulus terrestris and its synergistic effect with Capsella bursa-pastoris and Glycyrrhiza glabra against oral pathogens: an in-vitro study. Avicenna J Phytomed. 2015 ;5(3):210-7. [View at Publisher] [PubMed] [Google Scholar]
25. Hakemi-Vala M, Makhmor M, Kobarfar F, Kamalinejad M, Heidary M, Khoshnood S. Investigation of antimicrobial effect of Tribulus terrestris L. against some gram positive and negative bacteria and candida spp. Novelty Biomed. 2014;2(3):85-90. [View at Publisher] [Google Scholar]
26. Kostova I, Dinchev D. Saponins in Tribulus terrestris-chemistry and bioactivity. Phytochemistry reviews. 2005;4(2-3):111-37. [View at Publisher] [DOI:10.1007/s11101-005-2833-x] [Google Scholar]
27. Mohammed MJ. Biological activity of saponins isolated from Tribulus terrestris (fruit) on growth of some bacteria. Tikrit J Pure Sci. 2008;13(3):1-4. [View at Publisher] [Google Scholar]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2007 All Rights Reserved | Medical Laboratory Journal

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.