1. Zuza-Alves DL, Silva-Rocha WP, Chaves GM. An Update on Candida tropicalis Based on Basic and Clinical Approaches. Front Microbiol. 2017 13;8:1927. [
DOI:10.3389/fmicb.2017.01927] [
PubMed] [
Google Scholar]
2. Megri Y, Arastehfar A, Boekhout T, et al. Candida tropicalis is the most prevalent yeast species causing candidemia in Algeria: the urgent need for antifungal stewardship and infection control measures. Antimicrob Resist Infect Control 2020;9: 50. doi: 10.1186/s13756-020-00710-z. [
View at Publisher] [
DOI:10.1186/s13756-020-00710-z] [
PubMed] [
Google Scholar]
3. Tseng YK, Chen YC, Hou CJ, Deng FS, Liang SH, Hoo SY, et al . Evaluation of Biofilm Formation in Candida tropicalis Using a Silicone-Based Platform with Synthetic Urine Medium. Microorganisms. 2020 1;8(5):660. [
DOI:10.3390/microorganisms8050660] [
PubMed] [
Google Scholar]
4. Kornitzer D. Regulation of Candida albicans Hyphal Morphogenesis by Endogenous Signals. J Fungi (Basel). 2019 28;5(1):21. [
DOI:10.3390/jof5010021] [
PubMed] [
Google Scholar]
5. Lackey E, Vipulanandan G, Childers DS, Kadosh D. Comparative evolution of morphological regulatory functions in Candida species. Eukaryot Cell. 2013 ;12(10):1356-68. [
DOI:10.1128/EC.00164-13.] [
PubMed] [
Google Scholar]
6. Sanguinetti M, Posteraro B. Susceptibility Testing of Fungi to Antifungal Drugs. J Fungi (Basel). 2018. 15; 4(3): 110. [
View at Publisher] [
DOI:10.3390/jof4030110] [
PubMed] [
Google Scholar]
7. Costa-de-Oliveira S, Rodrigues AG. Candida albicans antifungal resistance and tolerance in bloodstream infections: the triad yeast-host-antifungal. Microorganisms. 2020; 8: 154. [
View at Publisher] [
DOI:10.3390/microorganisms8020154] [
PubMed]
8. Cowen LE, Sanglard D, Howard S, et al. Mechanisms of antifungal drug resistance. Cold Spring Harb Perspect Med 2014;5: a019752. [
View at Publisher] [
DOI:10.1101/cshperspect.a019752] [
PubMed] [
Google Scholar]
9. Berkow EL, Lockhart SR. Fluconazole resistance in Candida species: a current perspective. Infect Drug Resist. 2017; 10: 237-45. [
DOI:10.2147/IDR.S118892] [
PubMed]
10. Sadeghi G, Ebrahimi-Rad M, Mousavi SF, Shams-Ghahfarokhi M, Razzaghi-Abyaneh M. Emergence of non-Candida albicans species: epidemiology, phylogeny and fluconazole susceptibility profile. Mycol Med. 2018; 28: 51-58. [
View at Publisher] [
DOI:10.1016/j.mycmed.2017.12.008] [
PubMed] [
Google Scholar]
11. Tan J, Zhang J, Chen W, Sun Y, Wan Z, Li R. The A395T mutation in ERG11 gene confers fluconazole resistance in Candida tropicalis causing candidemia. Mycopathologia. 2015; 179: 213-8. [
View at Publisher] [
DOI:10.1007/s11046-014-9831-8] [
PubMed] [
Google Scholar]
12. Katz L, Baltz RH. Natural product discovery: past, present, and future. J Ind Microbiol Biotechnol. 2016; 43: 155-76. [
View at Publisher] [
DOI:10.1007/s10295-015-1723-5] [
PubMed] [
Google Scholar]
13. Piras A, Cocco V, Falconieri D, Porcedda S, Marongiu B, Maxia A. Isolation of the volatile oil from Satureja thymbra by supercritical carbon dioxide extraction: chemical composition and biological activity. Nat Prod Commun. 2011; 6: 1523-6. [
DOI:10.1177/1934578X1100601029] [
PubMed] [
Google Scholar]
14. Gallucci MN, Carezzano ME, Oliva MM, Demo MS, Pizzolitto RP, Zunino MP, et al. In vitro activity of natural phenolic compounds against fluconazole-resistant Candida species: a quantitative structure-activity relationship analysis. J Appl Microbiol. 2014; 116: 795-804. [
View at Publisher] [
DOI:10.1111/jam.12432] [
PubMed] [
Google Scholar]
15. Soliman S, Alnajdy D, El-Keblawy AA, Mosa KA, Khoder G, Noreddin AM. Plants' natural products as alternative promising anti-Candida drugs. Pharmacogn Rev. 2017; 11: 104-22. [
DOI:10.4103/phrev.phrev_8_17] [
PubMed] [
Google Scholar]
16. Alizadeh F, Khodavandi A, Esfandyari S, Nouripour-Sisakht S. Analysis of ergosterol and gene expression profiles of sterol Δ5,6-desaturase (ERG3) and lanosterol 14α-demethylase (ERG11) in Candida albicans treated with carvacrol. J Herbmed Pharmacol. 2018; 7: 79-87. [
View at Publisher] [
DOI:10.15171/jhp.2018.14] [
Google Scholar]
17. Fei Lv, Hao Liang, Qipeng Yuan, Chunfang Li. In vitro antimicrobial effects and mechanism of action of selected plant essential oil combinations against four food related microorganisms. Food Res Int 2011;44: 3057-64. [
View at Publisher] [
DOI:10.1016/j.foodres.2011.07.030] [
Google Scholar]
18. Chouhan S, Sharma K, Guleria S. Antimicrobial activity of some essential oils-present status and future perspectives. Medicines (Basel) 2017;4: 58. [
View at Publisher] [
DOI:10.3390/medicines4030058] [
Google Scholar]
19. Wijesundara NM, Lee SF, Cheng Z, et al. Carvacrol exhibits rapid bactericidal activity against Streptococcus pyogenes through cell membrane damage. Sci Rep 2021;11: 1487. [
View at Publisher] [
DOI:10.1038/s41598-020-79713-0] [
PubMed] [
Google Scholar]
20. Husnu Can Baser K. Biological and pharmacological activities of carvacrol and carvacrol bearing essential oils. Curr Pharm Des. 2008;14: 3106-19. [
DOI:10.2174/138161208786404227] [
PubMed] [
Google Scholar]
21. Appiah T, Boakye YD, Agyare C. Antimicrobial activities and time-kill kinetics of extracts of selected ghanaian mushrooms. Evid Based Complement Alternat Med. 2017: 4534350. [
View at Publisher] [
DOI:10.1155/2017/4534350] [
PubMed] [
Google Scholar]
22. Alizadeh F, Khodavandi A, Zalakian S. Quantitation of ergosterol content and gene expression profile of ERG11 gene in fluconazole-resistant Candida albicans. Curr Med Mycol. 2017; 3: 13-19. [
DOI:10.29252/cmm.3.1.13] [
PubMed] [
Google Scholar]
23. Zare-Khafri M, Alizadeh F, Nouripour-Sisakht S, Khodavandi A, Gerami M. Inhibitory effect of magnetic iron oxide nanoparticles on the pattern of expression of lanosterol 14α-demethylase (ERG11) in fluconazole-resistant colonizing isolate of Candida albicans. IET Nanobiotechnol. 2020; 14: 375-81. [
View at Publisher] [
DOI:10.1049/iet-nbt.2019.0354] [
PubMed] [
Google Scholar]
24. Khodavandi A, Alizadeh F, Sanaee T. Antifungal activity of carvacrol on ergosterol synthesis in multidrug resistant Candida albicans. Hormozgan Med J. 2018; 22: e87226. [
View at Publisher] [
DOI:10.29252/hmj.22.2.113] [
Google Scholar]
25. Gao J, Wang H, Li Z, Wong AH, Wang YZ, Guo Y, et al. Candida albicans gains azole resistance by altering sphingolipid composition. Nat Commun. 2018; 9(1): 4495. [
View at Publisher] [
DOI:10.1038/s41467-018-06944-1] [
PubMed] [
Google Scholar]
26. Ahmad A, Khan A, Akhtar F, et al. Fungicidal activity of thymol and carvacrol by disrupting ergosterol biosynthesis and membrane integrity against Candida. Eur J Clin Microbiol Infect Dis. 2011; 30: 41-50. [
View at Publisher] [
DOI:10.1007/s10096-010-1050-8] [
PubMed] [
Google Scholar]
27. Manoharan RK, Lee JH, Kim YG, et al. Inhibitory effects of the essential oils α-longipinene and linalool on biofilm formation and hyphal growth of Candida albicans. Biofouling. 2017; 33: 143-55. [
View at Publisher] [
DOI:10.1080/08927014.2017.1280731] [
PubMed] [
Google Scholar]
28. Raut JS, Shinde RB, Chauhan NM, et al. Terpenoids of plant origin inhibit morphogenesis, adhesion, and biofilm formation by Candida albicans. Biofouling. 2013; 29: 87-96. [
View at Publisher] [
DOI:10.1080/08927014.2012.749398] [
PubMed] [
Google Scholar]
29. Tobaldini-Valerio FK, Bonfim-Mendonça PS, Rosseto HC, et al. Propolis: a potential natural product to fight Candida species infections. Future Microbiol. 2016; 11: 1035-46. [
View at Publisher] [
DOI:10.2217/fmb-2015-0016] [
PubMed] [
Google Scholar]
30. Lemos JAC, Brown TA, Burne RA. Effects of RelA on key virulence properties of planktonic and biofilm populations of Streptococcus mutans. Infect Immunity. 2004; 72: 1431-40. [
View at Publisher] [
DOI:10.1128/IAI.72.3.1431-1440.2004] [
PubMed] [
Google Scholar]
31. Niu C, Wang C, Yang Y, et al. Carvacrol induces Candida albicans apoptosis associated with Ca2+/calcineurin pathway. Front Cell Infect Microbiol. 2020; 10: 192. [
View at Publisher] [
DOI:10.3389/fcimb.2020.00192] [
PubMed] [
Google Scholar]