Volume 11, Issue 1 (Jan-Feb- 2017 2017)                   mljgoums 2017, 11(1): 16-22 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Arjmand M, Ghaemi E, Jamalli A. Impact of Various Environmental and Growth Conditions on Antigen 43 Gene Expression and Biofilm Formation by Uropathogenic Echserchia coli. mljgoums 2017; 11 (1) :16-22
URL: http://mlj.goums.ac.ir/article-1-926-en.html
1- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
2- Golestan Research Center of Gastroenterology and Hepatology
3- Laboratory Science Research Center, Golestan University of Medical Sciences, Gorgan, Iran , a_jamalli@yahoo.com
Abstract:   (23549 Views)
ABSTRACT
        Background and Objectives: Biofilm is a population of bacteria growing on a surface and enclosed in an exopolysaccharides matrix, which increases resistance to antimicrobial agents and immune response. Uropathogenic Escherichia coli (UPEC) are biofilm-forming bacteria and the most common cause of urinary tract infections (UTIs). This study evaluated the effect of different concentrations of glucose, NaCl, blood, serum and urine on biofilm formation and antigen 43 (Ag43) gene expression, as a main gene involved in biofilm formation.
        Methods: Among E. coli isolates from patients with UTI, four extended-spectrum beta-lactamase (ESBL) and non-ESBL strains, and a standard UPEC strain were selected. Biofilm formation of the strains in brain heart infusion (BHI) broth with different concentrations of glucose, NaCl, sheep blood, serum and human urine was evaluated using microplate method and crystal violet staining. Ag43 gene expression was investigated using Real-Time polymerase chain reaction, SYBR Green dye, and specific primers.
           Results: Presence of glucose at all concentrations reduced biofilm formation. Presence of 1% NaCl, 1% sheep blood, 10% bovine serum, and 5% urine significantly increased biofilm formation. Expression of Ag43 by the strains grown under 1% glucose, 1% NaCl, 1% sheep blood, 10% bovine serum and 5% urine decreased.
         Conclusion: All environmental factors other than glucose may increase biofilm formation of E. coli at different concentrations. This is not affected by factors such as isolation from inpatient or outpatients and type of strains (ESBL or non-ESBL). Contrary to our expectations, Ag43 expression is independent of environmental factors and decreases even under the most suitable concentrations.
          Keywords: Biofilms, Uropathogenic Escherichia coli, UTI, Antigen 43, Real-Time PCR.
Full-Text [PDF 596 kb]   (1807 Downloads)    
Research Article: Original Paper |
Received: 2017/01/28 | Accepted: 2017/01/28 | Published: 2017/01/28 | ePublished: 2017/01/28

References
1. Kaper JB, Nataro JP, Mobley HL. Pathogenic escherichia coli. Nature Reviews Microbiology. 2004; 2(2): 123-40. [DOI:10.1038/nrmicro818]
2. Ulett GC, Valle J, Beloin C, Sherlock O, Ghigo J-M, Schembri MA. Functional analysis of antigen 43 in uropathogenic Escherichia coli reveals a role in long-term persistence in the urinary tract. Infection and immunity. 2007; 75(7): 3233-44. [DOI:10.1128/IAI.01952-06]
3. Li Ke, Zhou W, Hong Y, Sacks SH, Sheerin NS. Synergy between type 1 fimbriae expression and C3 opsonisation increases internalisation of E. coli by human tubular epithelial cells. BMC microbiology. 2009; 9(1): 1.
4. Bouza E, San Juan R, Mu-oz P, Voss A, Kluytmans J; Co-operative Group of the European Study Group on Nosocomial Infections. A European perspective on nosocomial urinary tract infections II. Report on incidence, clinical characteristics and outcome (ESGINI–04 study), Clinical Microbiology and Infection. Clin Microbiol Infect. 2001; 7(10): 532-42. [DOI:10.1046/j.1198-743x.2001.00324.x]
5. The urological Research Center. Clinical Guide urinary tract infection. Publication of Pune. 2014. Ejrnæs K. Bacterial characteristics of importance for recurrent urinary tract infections caused by Escherichia coli. Dan Med Bull. 2011; 58(4): B4187. Frank DN, Wilson SS, Amand ALS, Pace NR. Culture-independent microbiological analysis of foley urinary catheter biofilms. PloS one. 2009; 4(11): e7811.
6. Anderson GG, Goller CC, Justice S, Hultgren SJ, Seed PC. Polysaccharide capsule and sialic acid-mediated regulation promote biofilm-like intracellular bacterial communities during cystitis. Infection and immunity. 2010; 78(3): 963-75. doi: 10.1128/IAI.00925-09. [DOI:10.1128/IAI.00925-09]
7. Da Re S, Le Quéré B, Ghigo J-M, Beloin C. Tight modulation of Escherichia coli bacterial biofilm formation through controlled expression of adhesion factors. Applied and environmental microbiology. 2007; 73(10): 3391-403. [DOI:10.1128/AEM.02625-06]
8. Van Houdt R, Michiels CW. Role of bacterial cell surface structures in Escherichia coli biofilm formation. Research in microbiology. 2005; 156(5-6): 626-33. [DOI:10.1016/j.resmic.2005.02.005]
9. Schembri MA, Kjærgaard K, Klemm P. Global gene expression in Escherichia coli biofilms. Molecular microbiology. 2003; 48(1): 253-67. [DOI:10.1046/j.1365-2958.2003.03432.x]
10. Dewanti R, Wong AC. Influence of culture conditions on biofilm formation by Escherichia coli O157: H7. International journal of food microbiology. 1995; 26(2): 147-64. [DOI:10.1016/0168-1605(94)00103-D]
11. Meshram L, Patidar RK, Khare M, Bagde S, Sahare KN, Singh V. Comparative analysis between biofilm formation of commensal and pathogenic Escherichia coli isolates. Asiatic J Biotechnol Res. 2012; 3: 1441-6.
12. Naves P, Del Prado G, Huelves L, Gracia M, Ruiz V, Blanco J, et al. Measurement of biofilm formation by clinical isolates of Escherichia coli is method‐dependent. J Appl Microbiol. 2008; 105(2): 585-90. doi: 10.1111/j.1365-2672.2008.03791.x. [DOI:10.1111/j.1365-2672.2008.03791.x]
13. Rumbo-Feal S, Gómez MJ, Gayoso C, Álvarez-Fraga L, Cabral MP, Aransay AM, et al. Whole transcriptome analysis of Acinetobacter baumannii assessed by RNA-sequencing reveals different mRNA expression profiles in biofilm compared to planktonic cells. PLoS One. 2013; 8(8): e72968. [DOI:10.1371/journal.pone.0072968]
14. Barrios AFG, Zuo R, Hashimoto Y, Yang L, Bentley WE, Wood TK. Autoinducer 2 controls biofilm formation in Escherichia coli through a novel motility quorum-sensing regulator (MqsR, B3022). J Bacteriol. 2006 Jan; 188(1): 305-316. doi: 10.1128/JB.188.1.305-316.2006. [DOI:10.1128/JB.188.1.305-316.2006]
15. Ramli NSK, Guan CE, Nathan S, Vadivelu J. The effect of environmental conditions on biofilm formation of Burkholderia pseudomallei clinical isolates. PLoS One. 2012; 7(9): e44104. Hossain A. Influence of normal human serum (NHS) on production of biofilm by clinical isolates of Pseudomonas aeruginosa. Life Sci J. 2013; 10(10s): 151-154.
16. Pan Y, Breidt F, Gorski L. Synergistic effects of sodium chloride, glucose, and temperature on biofilm formation by Listeria monocytogenes serotype 1/2a and 4b strains. Applied and environmental microbiology. 2010; b76(5): 1433-41. doi: 10.1128/AEM.02185-09. [DOI:10.1128/AEM.02185-09]
17. Naves P, Del Prado G, Huelves L, Rodriguez-Cerrato V, Ruiz V, Ponte M, et al. Effects of human serum albumin, ibuprofen and N-acetyl-L-cysteine against biofilm formation by pathogenic Escherichia coli strains. Journal of Hospital Infection. 2010; 76(2): 165-70. doi: 10.1016/j.jhin.2010.05.011. [DOI:10.1016/j.jhin.2010.05.011]
18. Jahid IK, Lee N-Y, Kim A, Ha S-D. Influence of glucose concentrations on biofilm formation, motility, exoprotease production, and quorum sensing in Aeromonas hydrophila. J Food Prot. 2013 Feb; 76(2): 239-47. doi: 10.4315/0362-028X.JFP-12-321. [DOI:10.4315/0362-028X.JFP-12-321]
19. Costa JCM, Espeschit IdF, Pieri FA, Benjamin LA, Moreira MAS. Increase in biofilm formation by Escherichia coli under conditions that mimic the mastitic mammary gland. Ciência Rural. 2014;44(4):666-71. doi:10.1590/S0103-84782014000400015. [DOI:10.1590/S0103-84782014000400015]
20. Soto SM, Smithson A, Martinez JA, Horcajada JP, Mensa J, Vila J. Biofilm formation in uropathogenic Escherichia coli strains: relationship with prostatitis, urovirulence factors and antimicrobial resistance. The Journal of urology. 2007; 177(1): 365-8. [DOI:10.1016/j.juro.2006.08.081]
21. Nilsson RE, Ross T, Bowman JP. Variability in biofilm production by Listeria monocytogenes correlated to strain origin and growth conditions. Int J Food Microbiol. 2011; 150(1): 14-24. doi: 10.1016/j.ijfoodmicro.
22. Rode TM, Langsrud S, Holck A, Moretro T. Different patterns of biofilm formation in Staphylococcus aureus under food-related stress conditions. Int J Food Microbiol. 2007; 116(3): 372-83. [DOI:10.1016/j.ijfoodmicro.2007.02.017]
23. Agarwal RK, Singh S, Bhilegaonkar KN, Singh VP. Optimization of microtiter plate assay for the testing of biofilm formation ability in different Salmonella serotypes. International Food Research Journal. 2011; 18(4): 1493-1498.
24. Ye Y, Ling N, Jiao R, Gao J. Effects of culture conditions on the biofilm formation of Cronobacter sakazakii strains and distribution of genes involved in biofilm formation. LWT-Food Science and Technology. 2015; 62(1). DOI: 10.1016/j.lwt.2015.01.035. [DOI:10.1016/j.lwt.2015.01.035]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2007 All Rights Reserved | Medical Laboratory Journal

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.