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Introduction 

Diabetes mellitus is a non-communicable disease that is a global health burden. 

Further, it was estimated in 2019 as the 9th largest cause of mortality and 
prevalent in all income levels (1-3). Vitamin D (Vit D) has been reported to 

regulate cellular proliferation, differentiation, and immune modulation (4). 

Several studies demonstrated that vit D is recognized for its anti-rachitic 
properties and protective effects against various diseases, including diabetes, 

hypertension, cardiovascular, autoimmune and dermatological diseases and 

cancer (5,6).  Vit D and 25 dihydroxy vit D [25(OH)2D] active hormonal form, 
1,25-dihydroxyvit D [1,25(OH)2D] are crucial for human biological and 

physiological functions, such as slow down inflammation and to reduce the 

intracellular oxidative stress (7,8). Vit D is one of the key controllers of systemic 
inflammation, oxidative stress and mitochondrial respiratory function, and thus, 

the aging process in humans. In turn, molecular and cellular actions form 

1,25(OH)2D slow down oxidative stress, cell and tissue damage, and the aging 
process. On the other hand, hypovitaminosis D impairs mitochondrial functions, 

and enhances oxidative stress and systemic inflammation.  Sufficient or adequate 

Vit D is beneficial to suppress the peroxides, Peroxyacyl nitrates and improves 
mitochondrial and endocrine functions, reducing the risks of vascular disorders, 

such as autoimmunity, infections, metabolic derangements, and impairment of 

DNA repair; all of this aids a healthy, graceful aging process (9-11). 
Vit D further increases the expression of glutathione peroxidase and converts 

the ROS molecule H2O2 to water. Vit D also effect the formation of glutathione 

through activation of the enzyme glucose-6-phosphate dehydrogenase which 
down regulates nitrogen oxide (NOx), a potent precursor for generating ROS that 

converts O2- to H2O2 and upregulating superoxide dismutase (SOD). These vit 

D-related actions collectively reduce the burden of intracellular ROS (12-14). 
  Research studies suggest that higher Vit D levels are associated with a lower 

risk of insulin resistance, a condition in which the body is unable to respond to 

or effectively use the insulin it produces. Vit D metabolites stimulate the immune 
response in children and adults, thereby having a crucial role in defense against 

pathogens (15). 

Oxidative stress occurs when the rate of free radical generation exceeds the 
capacity of antioxidant defense systems, leading to the toxic effects of free 

radicals (16,17). Oxidative stress is a potent risk factor for vascular complications 

in diabetes, and insulin resistance induces pathophysiologic changes in diabetes 
mellitus (18-20). So, the aim of this study was to investigate Vit D, total 

antioxidant capacity, malondialdehyde (MDA) levels in patients with T2DM and 

their association with HbA1c, insulin resistance and lipid profile parameters. 

 

 

Methods 

In this case-control study, seventy patients with T2DM, aged 35-50 years of age, 

were enrolled from August 2022 to April 2023. These patients, who were on oral 
hypoglycemic drugs, attended Government General Hospital attached to 

Siddhartha Medical College, Vijayawada, Andhra Pradesh, India. Patients on 

insulin, thyroid disorders, smokers, alcoholics, tobacco chewers, other active 
infective diseases, neoplastic disorders, liver dysfunction, history of myocardial 

infarction, stroke, and occlusive peripheral vascular disease were excluded from 

the study. Seventy healthy age- and sex-matched subjects were selected as 
control. Written informed consent was obtained from all subjects, and the study 

was approved by the Institutional Human Ethics Committee (IHEC) (IEC- 

SMCGGH/2024/AP/018).  Experiments were conducted in accordance with the 
Helsinki Declaration.  

Fasting blood samples were obtained from the subjects and centrifuged at 

2,000 g for 10 min. Samples were analyzed for glucose, lipid profile (Total 
Cholesterol, HDL-C, LDL-C, and triglycerides) using a Beckman Coulter fully 

automated analyzer. Vit D and insulin were assessed by Enzyme-linked 

immunosorbent assay (ELISA). Moreover, HbA1c was assayed with HPLC 
method. The total antioxidant capacity was estimated by Benzie et al. method 

(21), and lipid peroxidation using spectrophotometry for MDA quantification 

(22). Homeostasis model assessment for insulin resistance evaluation (HOMA-
IR) was calculated by fasting plasma insulin × glucose/22.5 (23). 

Statistical analyses were carried out by SPSS software version 25.0. The 

values were expressed as mean ± standard deviation (SD) using T-test. The 
Pearson correlation test was used for correlation analysis. P-value <0.05 was 

considered statistically significant. 
 

Results 

Table 1 presents the comparison of baseline parameters between the control 

group and patients with type 2 diabetes mellitus (T2DM). The mean age did not 

differ significantly between the two groups. However, body mass index (BMI), 
systolic blood pressure (BP), and diastolic BP were significantly higher in the 

T2DM group compared to controls (p < 0.05 or p < 0.001). Waist-to-hip ratio 

showed no significant difference between the groups. The average duration of 

diabetes among T2DM patients was 6.1 ± 2.0 years. 

Table 2 compares fasting and postprandial glucose levels, lipid profile, 

HbA1c, insulin levels, HOMA-IR, vit D, total antioxidant capacity, and MDA 
between the control and diabetic groups. Fasting plasma glucose (FPG), 

postprandial plasma glucose (PPG), HbA1c, insulin, HOMA-IR, total 

cholesterol, serum triglycerides, LDL cholesterol, and MDA levels were 
significantly increased in T2DM patients (p < 0.05 or p < 0.001).  
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In contrast, HDL cholesterol, vit D levels, and total antioxidant capacity were 

significantly decreased in diabetic patients compared to controls (p < 0.001). The 

mean vit D levels in the control group and patients with T2DM were 35 ng/ml 
and 20.8 ng/ml, respectively (Figure 1). 

 
Table 3 illustrates the correlation between vit D levels and various 

biochemical parameters in both T2DM patients and controls. Vit D showed a 

significant positive correlation with total antioxidant capacity and a significant 

negative correlation with MDA, HbA1c, and HOMA-IR in both groups (p < 0.05 

or p < 0.01). However, no significant correlations were observed between vit D 
and lipid profile parameters, including total cholesterol, triglycerides, HDL 

cholesterol, and LDL cholesterol. 
 
 

 

Discussion 

T2DM is associated with insulin resistance, a defective response to physiological 

or increased exogenous or endogenous insulin concentration, leading to 

hyperglycemia and hyperinsulinism. Insulin not only regulates the metabolism 

but also acts as a growth factor. Hyperinsulinism stimulates abnormal activation 

of multiple cellular signaling cascades and strengthens growth factor-dependent 
cell proliferation (24,25). In the present study, we observed significant reduction 

of Vit D levels in patients with T2DM compared with healthy controls. Studies 

have reported that Vit D may have a pivotal role in insulin sensitivity through a 
different mechanism, including an increase in the transcriptional activation and 

expression of insulin receptor genes, which promotes basal and insulin-

stimulated glucose oxidation, thereby improving insulin sensitivity (26,27). 
Nazarian et al. reported that Vit D3 supplementation is beneficial to improve 

insulin sensitivity in subjects with impaired fasting glucose levels (28). 

The present study also demonstrates that Vit D levels negatively correlate 
with insulin resistance and HbA1c. One of the experimental studies revealed Vit 

D levels could promote the synthesis and secretion of insulin in the pancreas of 

mice (29). Vit D restores glucose-stimulated insulin secretion by promoting β-
cell survival due to modulation of cytokines (30,31). Further insulin secretion is 

also influenced by calcium concentration and flux through β cells (32). Vit D 

regulates the function of calbindin, a systolic calcium-binding protein found in 

pancreatic β-cells, and acts as a modulator of depolarization-stimulated insulin 

secretion via regulation of intracellular calcium. Parathyroid Hormone (PTH), 

which is regulated by vit D, is associated with insulin synthesis and secretion in 
the pancreas (33). It means that decreased Vit D level is one the confounding 

factors for increased insulin resistance and elevated HbA1c levels in patients with 

T2DM.  
The present reveals significant oxidative stress in patients with T2DM, as 

assessed through the evaluation of total antioxidant capacity and lipid 

peroxidation (MDA) assessment.  Vit D levels positively correlated with total 
antioxidant capacity, whereas negatively correlated with MDA levels. A previous 

study demonstrated that Vit D deficiency caused insulin resistance by causing 

oxidative stress in hepatocytes (34). Vit D could play a role in increasing some 
anti-inflammatory cytokines while decreasing the production of some pro-

inflammatory cytokines. Depletion of Vit D and stable silencing of 1α (OH)ase 

in L02 hepatocytes led to a significant production of reactive oxygen species 
(ROS) and reactive nitrogen species (RNS), along with subsequent p53-p21 

activation and DNA damage (35-38). Therefore, decreased Vit D levels are 

crucial to promoting oxidative stress in patients with T2DM. 

 
Conclusion 

Vit D deficiency may be one of the vital risk factors responsible for increased 

oxidative stress in patients with T2DM. Regular monitoring and supplementation 

of Vit D are beneficial for the reduction of oxidative stress and vascular 
complications in these patients. 
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Figure 1. Vitamin D levels in the controls and patients with T2DM 
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Table 3. Correlation between Vitamin D and measured parameters in the patients with 

T2DM and controls 

Parameters 

Correlation 

Coefficient-r -T2 

DM group 

P-value 

Correlation 

Coefficient-r -Control 

group 

P-value 

Total antioxidant 

capacity 
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*Correlation is significant at the 0.05 level (2-tailed). 

**Correlation is significant at the 0.01 level (2-tailed). TG: Triglyceride. 
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