1. Porras-Gómez M, Vega-Baudrit J, Nú-ez-Corrales S. Overview of multidrug-resistant Pseudomonas aeruginosa and novel therapeutic approaches. Journal of Biomaterials and Nanobiotechnology. 2012; 3(04): 519-527.
https://doi.org/10.4236/jbnb.2012.324053 [
DOI:10.4236/jbnb.2012.324053.]
2. Streeter K, Katouli M. Pseudomonas aeruginosa: A review of their Pathogenesis and Prevalence in Clinical Settings and the Environment. Infection, Epidemiology and Medicine. 2016; 2(1): 25-32. [
DOI:10.18869/modares.iem.2.1.25]
3. Shakibaie MR, Shahcheraghi F, Hashemi A, Adeli NS. Detection of TEM, SHV and PER Type Extended-Spectrum ß-Lactamase Genes among Clinical Strains of Pseudomonas aeruginosa Isolated from Burnt Patients at Shafa-Hospital, Kerman, Iran. Iranian journal of basic medical sciences. 2008; 11(2): 104-111. DOI: 10.22038/ijbms.2008.5220
4. Lister PD, Wolter DJ, Hanson ND. Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev. 2009; 22(4): 582-610.
https://doi.org/10.1128/CMR.00040-09 [
DOI:10.1128/CMR.00040-09.]
5. Lee GC, Reveles KR, Attridge RT, Lawson KA, Mansi IA, Lewis JS, et al. Outpatient antibiotic prescribing in the United States: 2000 to 2010. BMC medicine. 2014;12(1):96. [
DOI:10.1186/1741-7015-12-96]
6. Golkar Z, Bagasra O, Pace DG. Bacteriophage therapy: a potential solution for the antibiotic resistance crisis. The Journal of Infection in Developing Countries. 2014;8(02):129-136. [
DOI:10.3855/jidc.3573]
7. Magiorakos A, Srinivasan A, Carey R, Carmeli Y, Falagas M, Giske C, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clinical microbiology and infection. 2012; 18(3): 268-281. [
DOI:10.1111/j.1469-0691.2011.03570.x]
8. Mesaros N, Nordmann P, Plésiat P, Roussel-Delvallez M, Van Eldere J, Glupczynski Y, et al. Pseudomonas aeruginosa: resistance and therapeutic options at the turn of the new millennium. Clinical microbiology and infection. 2007; 13(6): 560-578. [
DOI:10.1111/j.1469-0691.2007.01681.x]
9. Carmeli Y, Troillet N, Eliopoulos GM, Samore MH. Emergence of antibiotic-resistant Pseudomonas aeruginosa: comparison of risks associated with different antipseudomonal agents. Antimicrob Agents Chemother. 1999; 43(6):1379-1382.
10. Komijani M, Bouzari M, Rahimi F. Detection of TEM, SHV AND CTX-M antibiotic gesistance genes In Escherichia coli isolates from infected wounds. Medical Laboratory Journal. 2017; 11(2): 30-35.
11. Bush K. Bench-to-bedside review: the role of β-lactamases in antibiotic-resistant Gram-negative infections. Critical Care. 2010;14(3): 224.
https://doi.org/10.1186/cc8892 [
DOI:10.1186/cc8892.]
12. Shaikh S, Fatima J, Shakil S, Rizvi SMD, Kamal MA. Antibiotic resistance and extended spectrum beta-lactamases: Types, epidemiology and treatment. Saudi journal of biological sciences. 2015; 22(1): 90-101. [
DOI:10.1016/j.sjbs.2014.08.002]
13. Patel JB. Performance standards for antimicrobial susceptibility testing: Clinical and Laboratory Standards Institute. 2017.
14. Komijani M, Bouzari M, Rahimi F. Detection and Characterization of a Novel Lytic Bacteriophage (vB-KpneM-Isf48) Against Klebsiella pneumoniae Isolates from Infected Wounds Carrying Antibiotic-Resistance Genes (TEM, SHV, and CTX-M). Iranian Red Crescent Medical Journal. 2016;19(2): e34475. [
DOI:10.5812/ircmj.34475]
15. Ullah F, Malik SA, Ahmed J. Antimicrobial susceptibility and ESBL prevalence in Pseudomonas aeruginosa isolated from burn patients in the North West of Pakistan. Burns. 2009; 35(7): 1020-1025.
https://doi.org/10.1016/j.burns.2009.01.005 [
DOI:10.1016/j.burns.2009.01.005.]
16. Moniri R, Tavajjohi Z. Detection of ESBLs and MDR in Pseudomonas aeruginosa in a tertiary-care teaching hospital. Archives of Clinical Infectious Diseases. 2011; 6(1): 18-23.
17. Alikhani MY, Tabar ZK, Mihani F, Kalantar E, Karami P, Sadeghi M, et al. Antimicrobial resistance patterns and prevalence of blaPER-1 and blaVEB-1 genes among ESBL-producing Pseudomonas aeruginosa isolates in West of Iran. Jundishapur Journal of Microbiology. 2014; 7(1):e8888. doi: 10.5812/jjm.8888. [
DOI:10.5812/jjm.8888]
18. Zafer MM, Al-Agamy MH, El-Mahallawy HA, Amin MA, Ashour MSE-D. Antimicrobial resistance pattern and their beta-lactamase encoding genes among Pseudomonas aeruginosa strains isolated from cancer patients. BioMed research international. 2014; 2014: 8.
https://doi.org/10.1155/2014/101635 [
DOI:10.1155/2014/101635.]
19. Tawfik AF, Shibl AM, Aljohi MA, Altammami MA, Al-Agamy MH. Distribution of Ambler class A, B and D β-lactamases among Pseudomonas aeruginosa isolates. Burns. 2012;38(6):855-860.
https://doi.org/10.1016/j.burns.2012.01.005 [
DOI:10.1016/j.burns.2012.01.005.]
20. Shahcheraghi F, Nikbin V-S, Feizabadi MM. Prevalence of ESBLs genes among multidrug-resistant isolates of Pseudomonas aeruginosa isolated from patients in Tehran. Microbial Drug Resistance. 2009; 15(1): 37-39. [
DOI:10.1089/mdr.2009.0880]
21. Shahin K, Bouzari M, Wang R. Isolation, characterization and genomic analysis of a novel lytic bacteriophage vB_SsoS-ISF002 infecting Shigella sonnei and Shigella flexneri. Journal of medical microbiology. 2018; 67(3): 376-386.
https://doi.org/10.1099/jmm.0.000683 [
DOI:10.1099/jmm.0.000683.]
22. Shahin K, Bouzari M. Bacteriophage application for biocontrolling Shigella flexneri in contaminated foods. Journal of food science and technology. 2018;55(2):550-559. [
DOI:10.1007/s13197-017-2964-2]
23. Bao H, Zhang P, Zhang H, Zhou Y, Zhang L, Wang R. Bio-control of Salmonella enteritidis in foods using bacteriophages. Viruses. 2015; 7(8): 4836-4853. [
DOI:10.3390/v7082847]
24. Yazdi M, Bouzari M, Ghaemi EA. Isolation and Characterization of a Lytic Bacteriophage (vB_PmiS-TH) and Its Application in Combination with Ampicillin against Planktonic and Biofilm Forms of Proteus mirabilis Isolated from Urinary Tract Infection. Journal of molecular microbiology and biotechnology. 2018; 28(1): 37-46. [
DOI:10.1159/000487137]
25. Bhattacharjee A, Sen MR, Prakash P, Anupurba S. Role of β-lactamase inhibitors in enterobacterial isolates producing extended-spectrum β-lactamases. Journal of antimicrobial chemotherapy. 2008; 61(2): 309-314.
https://doi.org/10.1093/jac/dkm494 [
DOI:10.1093/jac/dkm494.]
26. Kim J, Jeon S, Rhie H, Lee B, Park M, Lee H, et al. Rapid detection of extended spectrum β-lactamase (ESBL) for Enterobacteriaceae by use of a multiplex PCR-based method. Infection and Chemotherapy. 2009; 41(3): 181-184.
https://doi.org/10.3947/ic.2009.41.3.181 [
DOI:10.3947/ic.2009.41.3.181.]
27. Sidjabat HE, Paterson DL, Adams-Haduch JM, Ewan L, Pasculle AW, Muto CA, et al. Molecular epidemiology of CTX-M-producing Escherichia coli isolates at a tertiary medical center in western Pennsylvania. Antimicrobial agents and chemotherapy. 2009; 53(11): 4733-4739. [
DOI:10.1128/AAC.00533-09]
28. Neyestanaki DK, Mirsalehian A, Rezagholizadeh F, Jabalameli F, Taherikalani M, Emaneini M. Determination of extended spectrum beta-lactamases, metallo-beta-lactamases and AmpC-beta-lactamases among carbapenem resistant Pseudomonas aeruginosa isolated from burn patients. Burns. 2014; 40(8): 1556-1561. [
DOI:10.1016/j.burns.2014.02.010]
29. Peerayeh SN, Mahabadi RP, Toupkanlou SP, Siadat SD. Diversity of β-lactamases produced by imipenem resistant, Pseudomonas aeruginosa isolates from the bloodstream. Burns. 2014;40(7):1360-1364. [
DOI:10.1016/j.burns.2014.01.009]
30. Jiang X, Zhang Z, Li M, Zhou D, Ruan F, Lu Y. Detection of extended-spectrum β-lactamases in clinical isolates of Pseudomonas aeruginosa. Antimicrobial agents and chemotherapy. 2006;50(9):2990-2995. [
DOI:10.1128/AAC.01511-05]