Volume 12, Issue 5 (Sep-Oct 2018)                   mljgoums 2018, 12(5): 34-41 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Komijani M, Shahin K, Barazandeh M, Sajadi M. Prevalence of Extended-Spectrum β-Lactamases Genes in Clinical Isolates of Pseudomonas aeruginosa. mljgoums 2018; 12 (5) :34-41
URL: http://mlj.goums.ac.ir/article-1-1116-en.html
1- Department of Biology, Faculty of Science, Arak University, Arak 38156-8-8349, Iran , M-Komijani@araku.ac.ir
2- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran and State Key Laboratory Cultivation Base of MOST, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
3- State Key Laboratory Cultivation Base of MOST, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
4- Department of Microbiology, Amin Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
Abstract:   (14930 Views)
ABSTRACT
            Background and Objectives: Pseudomonas aeruginosa is an opportunistic pathogen resistant to various antibiotics. The aim of the present study was to study resistant patterns in clinical isolates of P. aeruginosa, classify them into pandrug resistance (PDR), extensive drug resistance (XDR) and multidrug resistance (MDR) groups, and identify extended-spectrum β-lactamase (ESBL)-positive isolates using the phenotypic and genotypic methods.
            Methods: This cross-sectional study was conducted on 161 P. aeruginosa isolates collected from the city of Isfahan, Iran. Antibiotic susceptibility tests were performed using 11 antimicrobial agents. ESBL-positive strains were identified using the phenotypic and genotypic methods.
            Results: The highest level of antibiotic resistance was observed against ceftazidime (77.64%). None of the isolates was resistant to polymyxin B. In the phenotypic method, 64 isolates (39.75%) were found as ESLB-positive, whereas 132 isolates (81.98%) were ESBL-positive in the genotypic method. The number of ESBL-positive isolates in the genotypic method was significantly higher than in the phenotypic method. The frequency of XDR and MDR isolates was 50.93% and 27.32%, respectively. None of the isolates was PDR. The frequency of the blaTEM gene was significantly higher than other genes (P<0.0001).
            Conclusion: It was revealed that the genotypic method was much more accurate in identifying ESBL-positive strains than the phenotypic method. Therefore, use of the molecular method may increase the chance of successful treatment with antibiotics of the β-lactam family.
            Keywords: Drug Resistance,  β-lactamases, Pseudomonas aeruginosa.
Full-Text [PDF 540 kb]   (1943 Downloads)    
Research Article: Original Paper |
Received: 2018/08/13 | Accepted: 2018/08/13 | Published: 2018/08/13 | ePublished: 2018/08/13

References
1. Porras-Gómez M, Vega-Baudrit J, Nú-ez-Corrales S. Overview of multidrug-resistant Pseudomonas aeruginosa and novel therapeutic approaches. Journal of Biomaterials and Nanobiotechnology. 2012; 3(04): 519-527. https://doi.org/10.4236/jbnb.2012.324053 [DOI:10.4236/jbnb.2012.324053.]
2. Streeter K, Katouli M. Pseudomonas aeruginosa: A review of their Pathogenesis and Prevalence in Clinical Settings and the Environment. Infection, Epidemiology and Medicine. 2016; 2(1): 25-32. [DOI:10.18869/modares.iem.2.1.25]
3. Shakibaie MR, Shahcheraghi F, Hashemi A, Adeli NS. Detection of TEM, SHV and PER Type Extended-Spectrum ß-Lactamase Genes among Clinical Strains of Pseudomonas aeruginosa Isolated from Burnt Patients at Shafa-Hospital, Kerman, Iran. Iranian journal of basic medical sciences. 2008; 11(2): 104-111. DOI: 10.22038/ijbms.2008.5220
4. Lister PD, Wolter DJ, Hanson ND. Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev. 2009; 22(4): 582-610. https://doi.org/10.1128/CMR.00040-09 [DOI:10.1128/CMR.00040-09.]
5. Lee GC, Reveles KR, Attridge RT, Lawson KA, Mansi IA, Lewis JS, et al. Outpatient antibiotic prescribing in the United States: 2000 to 2010. BMC medicine. 2014;12(1):96. [DOI:10.1186/1741-7015-12-96]
6. Golkar Z, Bagasra O, Pace DG. Bacteriophage therapy: a potential solution for the antibiotic resistance crisis. The Journal of Infection in Developing Countries. 2014;8(02):129-136. [DOI:10.3855/jidc.3573]
7. Magiorakos A, Srinivasan A, Carey R, Carmeli Y, Falagas M, Giske C, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clinical microbiology and infection. 2012; 18(3): 268-281. [DOI:10.1111/j.1469-0691.2011.03570.x]
8. Mesaros N, Nordmann P, Plésiat P, Roussel-Delvallez M, Van Eldere J, Glupczynski Y, et al. Pseudomonas aeruginosa: resistance and therapeutic options at the turn of the new millennium. Clinical microbiology and infection. 2007; 13(6): 560-578. [DOI:10.1111/j.1469-0691.2007.01681.x]
9. Carmeli Y, Troillet N, Eliopoulos GM, Samore MH. Emergence of antibiotic-resistant Pseudomonas aeruginosa: comparison of risks associated with different antipseudomonal agents. Antimicrob Agents Chemother. 1999; 43(6):1379-1382.
10. Komijani M, Bouzari M, Rahimi F. Detection of TEM, SHV AND CTX-M antibiotic gesistance genes In Escherichia coli isolates from infected wounds. Medical Laboratory Journal. 2017; 11(2): 30-35.
11. Bush K. Bench-to-bedside review: the role of β-lactamases in antibiotic-resistant Gram-negative infections. Critical Care. 2010;14(3): 224. https://doi.org/10.1186/cc8892 [DOI:10.1186/cc8892.]
12. Shaikh S, Fatima J, Shakil S, Rizvi SMD, Kamal MA. Antibiotic resistance and extended spectrum beta-lactamases: Types, epidemiology and treatment. Saudi journal of biological sciences. 2015; 22(1): 90-101. [DOI:10.1016/j.sjbs.2014.08.002]
13. Patel JB. Performance standards for antimicrobial susceptibility testing: Clinical and Laboratory Standards Institute. 2017.
14. Komijani M, Bouzari M, Rahimi F. Detection and Characterization of a Novel Lytic Bacteriophage (vB-KpneM-Isf48) Against Klebsiella pneumoniae Isolates from Infected Wounds Carrying Antibiotic-Resistance Genes (TEM, SHV, and CTX-M). Iranian Red Crescent Medical Journal. 2016;19(2): e34475. [DOI:10.5812/ircmj.34475]
15. Ullah F, Malik SA, Ahmed J. Antimicrobial susceptibility and ESBL prevalence in Pseudomonas aeruginosa isolated from burn patients in the North West of Pakistan. Burns. 2009; 35(7): 1020-1025. https://doi.org/10.1016/j.burns.2009.01.005 [DOI:10.1016/j.burns.2009.01.005.]
16. Moniri R, Tavajjohi Z. Detection of ESBLs and MDR in Pseudomonas aeruginosa in a tertiary-care teaching hospital. Archives of Clinical Infectious Diseases. 2011; 6(1): 18-23.
17. Alikhani MY, Tabar ZK, Mihani F, Kalantar E, Karami P, Sadeghi M, et al. Antimicrobial resistance patterns and prevalence of blaPER-1 and blaVEB-1 genes among ESBL-producing Pseudomonas aeruginosa isolates in West of Iran. Jundishapur Journal of Microbiology. 2014; 7(1):e8888. doi: 10.5812/jjm.8888. [DOI:10.5812/jjm.8888]
18. Zafer MM, Al-Agamy MH, El-Mahallawy HA, Amin MA, Ashour MSE-D. Antimicrobial resistance pattern and their beta-lactamase encoding genes among Pseudomonas aeruginosa strains isolated from cancer patients. BioMed research international. 2014; 2014: 8. https://doi.org/10.1155/2014/101635 [DOI:10.1155/2014/101635.]
19. Tawfik AF, Shibl AM, Aljohi MA, Altammami MA, Al-Agamy MH. Distribution of Ambler class A, B and D β-lactamases among Pseudomonas aeruginosa isolates. Burns. 2012;38(6):855-860. https://doi.org/10.1016/j.burns.2012.01.005 [DOI:10.1016/j.burns.2012.01.005.]
20. Shahcheraghi F, Nikbin V-S, Feizabadi MM. Prevalence of ESBLs genes among multidrug-resistant isolates of Pseudomonas aeruginosa isolated from patients in Tehran. Microbial Drug Resistance. 2009; 15(1): 37-39. [DOI:10.1089/mdr.2009.0880]
21. Shahin K, Bouzari M, Wang R. Isolation, characterization and genomic analysis of a novel lytic bacteriophage vB_SsoS-ISF002 infecting Shigella sonnei and Shigella flexneri. Journal of medical microbiology. 2018; 67(3): 376-386. https://doi.org/10.1099/jmm.0.000683 [DOI:10.1099/jmm.0.000683.]
22. Shahin K, Bouzari M. Bacteriophage application for biocontrolling Shigella flexneri in contaminated foods. Journal of food science and technology. 2018;55(2):550-559. [DOI:10.1007/s13197-017-2964-2]
23. Bao H, Zhang P, Zhang H, Zhou Y, Zhang L, Wang R. Bio-control of Salmonella enteritidis in foods using bacteriophages. Viruses. 2015; 7(8): 4836-4853. [DOI:10.3390/v7082847]
24. Yazdi M, Bouzari M, Ghaemi EA. Isolation and Characterization of a Lytic Bacteriophage (vB_PmiS-TH) and Its Application in Combination with Ampicillin against Planktonic and Biofilm Forms of Proteus mirabilis Isolated from Urinary Tract Infection. Journal of molecular microbiology and biotechnology. 2018; 28(1): 37-46. [DOI:10.1159/000487137]
25. Bhattacharjee A, Sen MR, Prakash P, Anupurba S. Role of β-lactamase inhibitors in enterobacterial isolates producing extended-spectrum β-lactamases. Journal of antimicrobial chemotherapy. 2008; 61(2): 309-314. https://doi.org/10.1093/jac/dkm494 [DOI:10.1093/jac/dkm494.]
26. Kim J, Jeon S, Rhie H, Lee B, Park M, Lee H, et al. Rapid detection of extended spectrum β-lactamase (ESBL) for Enterobacteriaceae by use of a multiplex PCR-based method. Infection and Chemotherapy. 2009; 41(3): 181-184. https://doi.org/10.3947/ic.2009.41.3.181 [DOI:10.3947/ic.2009.41.3.181.]
27. Sidjabat HE, Paterson DL, Adams-Haduch JM, Ewan L, Pasculle AW, Muto CA, et al. Molecular epidemiology of CTX-M-producing Escherichia coli isolates at a tertiary medical center in western Pennsylvania. Antimicrobial agents and chemotherapy. 2009; 53(11): 4733-4739. [DOI:10.1128/AAC.00533-09]
28. Neyestanaki DK, Mirsalehian A, Rezagholizadeh F, Jabalameli F, Taherikalani M, Emaneini M. Determination of extended spectrum beta-lactamases, metallo-beta-lactamases and AmpC-beta-lactamases among carbapenem resistant Pseudomonas aeruginosa isolated from burn patients. Burns. 2014; 40(8): 1556-1561. [DOI:10.1016/j.burns.2014.02.010]
29. Peerayeh SN, Mahabadi RP, Toupkanlou SP, Siadat SD. Diversity of β-lactamases produced by imipenem resistant, Pseudomonas aeruginosa isolates from the bloodstream. Burns. 2014;40(7):1360-1364. [DOI:10.1016/j.burns.2014.01.009]
30. Jiang X, Zhang Z, Li M, Zhou D, Ruan F, Lu Y. Detection of extended-spectrum β-lactamases in clinical isolates of Pseudomonas aeruginosa. Antimicrobial agents and chemotherapy. 2006;50(9):2990-2995. [DOI:10.1128/AAC.01511-05]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2007 All Rights Reserved | Medical Laboratory Journal

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.